Contribution of T cell subsets to the pathophysiology of Pneumocystis-related immunorestitution disease.

T 细胞亚群对肺孢子虫相关免疫重建疾病病理生理学的贡献

阅读:7
作者:Bhagwat Samir P, Gigliotti Francis, Xu Haodong, Wright Terry W
Immune-mediated lung injury is an important component of Pneumocystis pneumonia (PcP)-related immunorestitution disease (IRD). However, the individual contribution of CD4(+) and CD8(+) T cells to the pathophysiology of IRD remains undetermined. Therefore, IRD was modeled in severe combined immunodeficient mice, and specific T cell depletion was used to determine how T cell subsets interact to affect the nature and severity of disease. CD4(+) cells were more abundant than CD8(+) cells during the acute stage of IRD that coincided with impaired pulmonary physiology and organism clearance. Conversely, CD8(+) cells were more abundant during the resolution phase following P. carinii clearance. Depletion of CD4(+) T cells protected mice from the acute pathophysiology of IRD. However, these mice could not clear the infection and developed severe PcP at later time points when a pathological CD8(+) T cell response was observed. In contrast, mice depleted of CD8(+) T cells efficiently cleared the infection but developed more severe disease, an increased frequency of IFN-gamma-producing CD4(+) cells, and a prolonged CD4(+) T cell response than mice with both CD4(+) and CD8(+) cells. These data suggest that CD4(+) T cells mediate the acute respiratory disease associated with IRD. In contrast, CD8(+) T cells contributed to neither lung injury nor organism clearance when CD4(+) cells were present, but instead served to modulate CD4 function. In the absence of CD4(+) cells, CD8(+) T cells produced a nonprotective, pathological immune response. These data suggest that the interplay of CD4(+) and CD8(+) T cells affects the ultimate outcome of PcP-related IRD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。