Cardiomyocyte subdomain contractility arising from microenvironmental stiffness and topography

微环境刚度和地形引起的心肌细胞亚域收缩性

阅读:6
作者:Kathleen M Broughton, Brenda Russell

Abstract

Cellular structure and function are interdependent. To understand this relationship in beating heart cells, individual neonatal rat ventricular myocytes (NRVMs) were analyzed one and 3 days after plating when cultured on different stiffness (100, 400 kPa) and surface structures (flat or [Formula: see text] high, [Formula: see text] diameter, microposts spaced [Formula: see text] apart) manufactured from polydimethylsiloxane. Myofibril structure seen by immunohistochemistry was organized in three dimensions when NRVMs were attached to microposts. On day three, paxillin distribution near the post serving as cellular anchorage was quantified on both soft posts (12.04 % of total voxel count) and stiff posts (8.16 %). Living NRVMs were analyzed using line scans for sarcomeric shortening and shortening velocity, and traction force microscopy for surface stress and surface tension. One day after plating, NRVMs shortened more on soft posts ([Formula: see text] at [Formula: see text]) compared to either soft flat ([Formula: see text] at [Formula: see text]), stiff posts ([Formula: see text] at [Formula: see text]) or stiff flat ([Formula: see text] at [Formula: see text]). NRVMs have decreased shortening and shortening velocity on soft posts ([Formula: see text] at [Formula: see text]) compared to soft flat ([Formula: see text] at [Formula: see text]) substrates. The surface stress and surface tension increased over time for both soft post ([Formula: see text] and [Formula: see text] to [Formula: see text] and [Formula: see text]) and flat ([Formula: see text] and [Formula: see text] to [Formula: see text] and [Formula: see text]) substrates. Paxillin displacement during contraction on day three was significantly greater in NRVMs attached to soft posts [Formula: see text] compared to flat [Formula: see text] substrates. The volume and time creating four-dimensional data, interpreted by structural engineering theory, demonstrate subdomain structure is maintained by the counterbalance between the external load acting upon and the internal forces generated by the cardiomyocyte. These findings provide further insight into localized regulation of cellular mechanical function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。