There is a present need to develop alternative biotherapeutic drugs to mitigate the exacerbated inflammatory immune responses characteristic of sepsis. The potent endotoxin lipopolysaccharide (LPS), a major component of Gram-negative bacterial outer membrane, activates the immune system via Toll-like receptor 4 (TLR4), triggering macrophages and a persistent cascade of inflammatory mediators. Our previous studies have demonstrated that Fh15, a recombinant member of the Fasciola hepatica fatty acid binding protein family, can significantly increase the survival rate by suppressing many inflammatory mediators induced by LPS in a septic shock mouse model. Although Fh15 has been proposed as a TLR4 antagonist, the specific mechanisms underlying its immunomodulatory effect remained unclear. In the present study, we employed a quantitative proteomics approach using tandem mass tag (TMT) followed by LC-MS/MS analysis to identify and quantify differentially expressed proteins that participate in signaling pathways downstream TLR4 of macrophages, which can be dysregulated by Fh15. Data are available via ProteomeXchange with identifier PXD065520. Based on significant fold change (FC) cut-off of 1.5 and p-value ⤠0.05 criteria, we focused our attention to 114 proteins that were upregulated by LPS and downregulated by Fh15. From these proteins, TNFα, IL-1α, Lck, NOS2, SOD2 and CD36 were selected for validation by Western blot on murine bone marrow-derived macrophages due to their relevant roles in the NF-κB, iNOS, oxidative stress, and phagosome signaling pathways, which are closely associated with sepsis pathogenesis. These results suggest that Fh15 exerts a broad spectrum of action by simultaneously targeting multiple downstream pathways activated by TLR4, thereby modulating various aspects of the inflammatory responses during sepsis.
Quantitative Proteomics Reveals Fh15 as an Antagonist of TLR4 Downregulating the Activation of NF-κB, Inducible Nitric Oxide, Phagosome Signaling Pathways, and Oxidative Stress of LPS-Stimulated Macrophages.
定量蛋白质组学揭示 Fh15 作为 TLR4 的拮抗剂,可下调 LPS 刺激的巨噬细胞的 NF-κB 激活、诱导型一氧化氮、吞噬体信号通路和氧化应激
阅读:6
作者:Armina-Rodriguez Albersy, Valdés Fernandez Bianca N, Ocasio-Malavé Carlimar, Cantres Rosario Yadira M, Carrasquillo Carrión Kelvin, Meléndez Loyda M, Roche Lima Abiel, Tosado Rodriguez Eduardo L, Espino Ana M
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Jul 18; 26(14):6914 |
| doi: | 10.3390/ijms26146914 | 研究方向: | 信号转导、细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
