Islet glutamic acid decarboxylase modified by reactive oxygen species is recognized by antibodies from patients with type 1 diabetes mellitus.

1 型糖尿病患者的抗体可以识别被活性氧修饰的胰岛谷氨酸脱羧酶

阅读:5
作者:Trigwell S M, Radford P M, Page S R, Loweth A C, James R F, Morgan N G, Todd I
The generation of an autoimmune response against islet beta-cells is central to the pathogenesis of type 1 diabetes mellitus, and this response is driven by the stimulation of autoreactive lymphocytes by components of the beta-cells themselves. Reactive oxygen species (ROS) have been implicated in the beta-cell destruction which leads to type 1 diabetes and may modify beta-cell components so as to enhance their immunogenicity. We investigated the effects of oxidation reactions catalysed by copper or iron on the major beta-cell autoantigen glutamic acid decarboxylase (GAD). Lysates of purified rat islets were exposed to copper or iron sulphate with or without hydrogen peroxide or ascorbic acid. Immunostaining showed that these treatments generated high molecular weight covalently linked aggregates containing GAD. These are not formed by intermolecular disulphide bonds between cysteine residues since they cannot be resolved into monomeric form when electrophoresed under extreme reducing conditions. There was no modification of insulin or pro-insulin by ROS. The same oxidative changes to GAD could be induced in viable islet cells treated with copper sulphate and hydrogen peroxide, and thus the modifications are not an artefact of the catalysed oxidation of cell-free lysates. Sera from patients with type 1 diabetes and stiffman syndrome containing GAD antibodies reacted predominantly with the highest molecular weight modified protein band of GAD: normal human sera did not precipitate GAD. Thus, oxidatively modified aggregates of GAD react with serum antibodies of type 1 diabetes patients and some SMS patients: this is consistent with oxidative modifications of autoantigens being relevant to the pathogenesis of type 1 diabetes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。