Hemangioendotheliomas are classified as endothelial cell tumors, which are the most common soft tissue tumors in infants. In a murine model of hemangioendothelioma, we previously showed that MCP-1 is required for its development and that the expression of MCP-1 in EOMA cells is redox sensitive. Here, we sought to identify the source of oxidants that drive hemangioendothelioma formation. Seven known isoforms exist of the catalytic subunit gp91. Only the nox-4 isoform of gp91 was present in EOMA cells, in contrast with non-tumor-forming murine endothelial cells that contained multiple forms of nox. Nox-4 knockdown markedly attenuated MCP-1 expression and hemangioendothelioma formation. We report that in EOMA cells, nox-4 is localized such that it delivers H2O2 to the nuclear compartment. Such delivery of H2O2 causes oxidative modification of DNA, which can be detected in the urine of tumor-bearing mice as 8-hydroxy-2-deoxyguanosine. Iron chelation by in vivo administration of deferoxamine improved tumor outcomes. The current state of information connects nox-4 to MCP-1 to form a major axis of control that regulates the fate of hemangioendothelioma development in vivo.
Nox-4-dependent nuclear H2O2 drives DNA oxidation resulting in 8-OHdG as urinary biomarker and hemangioendothelioma formation.
Nox-4 依赖的核 H2O2 驱动 DNA 氧化,导致 8-OHdG 作为尿液生物标志物和血管内皮瘤形成
阅读:8
作者:Gordillo Gayle, Fang Huiqing, Park Hana, Roy Sashwati
| 期刊: | Antioxidants & Redox Signaling | 影响因子: | 6.100 |
| 时间: | 2010 | 起止号: | 2010 Apr 15; 12(8):933-43 |
| doi: | 10.1089/ars.2009.2917 | 研究方向: | 肿瘤 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
