Organoids and 3D imaging techniques are crucial for studying human tissue structure and function, but traditional 3D reconstruction methods are expensive and time consuming, relying on complete z stack confocal microscopy data. This paper introduces VONet, a deep learning-based system for 3D organoid rendering that uses a fully convolutional neural network to reconstruct entire 3D structures from a minimal number of z stack images. VONet was trained on a library of over 39,000 virtual organoids (VOs) with diverse structural features and achieved an average intersection over union of 0.82 in performance validation. Remarkably, VONet can predict the structure of deeper focal plane regions, unseen by conventional confocal microscopy. This innovative approach and VO dataset offer significant advancements in 3D bioimaging technologies.
VONet: A deep learning network for 3D reconstruction of organoid structures with a minimal number of confocal images.
VONet:一种深度学习网络,利用最少数量的共聚焦图像对类器官结构进行 3D 重建
阅读:13
作者:Song Euijeong, Kim Minsuh, Lee Siyoung, Liu Hui-Wen, Kim Jihyun, Choi Dong-Hee, Kamm Roger, Chung Seok, Yang Ji Hun, Kwak Tae Hwan
| 期刊: | Patterns | 影响因子: | 7.400 |
| 时间: | 2024 | 起止号: | 2024 Sep 30; 5(10):101063 |
| doi: | 10.1016/j.patter.2024.101063 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
