Effect of collection methods on combustion particle physicochemical properties and their biological response in a human macrophage-like cell line.

收集方法对燃烧颗粒的物理化学性质及其在人巨噬细胞样细胞系中的生物学反应的影响

阅读:5
作者:Kaur Kamaljeet, Jaramillo Isabel C, Mohammadpour Raziye, Sturrock Anne, Ghandehari Hamidreza, Reilly Christopher, Paine Robert 3rd, Kelly Kerry E
In vitro studies are a first step toward understanding the biological effects of combustion-derived particulate matter (cdPM). A vast majority of studies expose cells to cdPM suspensions, which requires a method to collect cdPM and suspend it in an aqueous media. The consequences of different particle collection methods on particle physiochemical properties and resulting biological responses are not fully understood. This study investigated the effect of two common approaches (collection on a filter and a cold plate) and one relatively new (direct bubbling in DI water) approach to particle collection. The three approaches yielded cdPM with differences in particle size distribution, surface area, composition, and oxidative potential. The directly bubbled sample retained the smallest sized particles and the bimodal distribution observed in the gas-phase. The bubbled sample contained ∼50% of its mass as dissolved species and lower molecular weight compounds, not found in the other two samples. These differences in the cdPM properties affected the biological responses in THP-1 cells. The bubbled sample showed greater oxidative potential and cellular reactive oxygen species. The scraped sample induced the greatest TNFα secretion. These findings have implications for in vitro studies of air pollution and for efforts to better understand the underlying mechanisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。