AIMS: The collagen-stimulated generation of reactive oxygen species (ROS) regulates signal transduction in platelets, although the mechanism is unclear. The major targets of ROS include protein tyrosine phosphatases (PTPs). ROS-mediated oxidation of the active cysteine site in PTPs abrogates the PTP catalytic activity. The aim of this study was to elucidate whether collagen-induced ROS generation leads to PTP oxidation, which promotes platelet stimulation. RESULTS: SH2 domain-containing PTP-2 (SHP-2) is oxidized in platelets by ROS produced upon collagen stimulation. The oxidative inactivation of SHP-2 leads to the enhanced tyrosine phosphorylation of spleen tyrosine kinase (Syk), Vav1, and Bruton's tyrosine kinase (Btk) in the linker for the activation of T cells signaling complex, which promotes the tyrosine phosphorylation-mediated activation of phospholipase Cγ2 (PLCγ2). Moreover, we found that, relative to wild-type platelets, platelets derived from glutathione peroxidase 1 (GPx1)/catalase double-deficient mice showed enhanced cellular ROS levels, oxidative inactivation of SHP-2, and tyrosine phosphorylation of Syk, Vav1, Btk, and PLCγ2 in response to collagen, which subsequently led to increased intracellular calcium levels, degranulation, and integrin αIIbβ3 activation. Consistent with these findings, GPx1/catalase double-deficiency accelerated the thrombotic response in FeCl3-injured carotid arteries. INNOVATION: The present study is the first to demonstrate that SHP-2 is targeted by ROS produced in collagen-stimulated platelets and suggests that a novel mechanism for the regulation of platelet activation by ROS is due to oxidative inactivation of SHP-2. CONCLUSION: We conclude that collagen-induced ROS production leads to SHP-2 oxidation, which promotes platelet activation by upregulating tyrosine phosphorylation-based signal transduction.
Reactive oxygen species play a critical role in collagen-induced platelet activation via SHP-2 oxidation.
活性氧通过 SHP-2 氧化在胶原蛋白诱导的血小板活化中起着关键作用
阅读:3
作者:Jang Ji Yong, Min Ji Hyun, Chae Yun Hee, Baek Jin Young, Wang Su Bin, Park Su Jin, Oh Goo Taeg, Lee Sang-Hak, Ho Ye-Shih, Chang Tong-Shin
| 期刊: | Antioxidants & Redox Signaling | 影响因子: | 6.100 |
| 时间: | 2014 | 起止号: | 2014 Jun 1; 20(16):2528-40 |
| doi: | 10.1089/ars.2013.5337 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
