Molecular interactions of glucocorticoid and mineralocorticoid receptors define novel transcription and biological functions.

糖皮质激素受体和盐皮质激素受体的分子相互作用决定了新的转录和生物学功能

阅读:8
作者:Sueyoshi Tatsuya, Petrillo Maria G, Jewell Christine M, Bortner Carl D, Perera Lalith, Xu Xiaojiang, Aguayo Felipe I, Diaz-Jimenez David, Robinson Anastasia G, Cook Molly E, Oakley Robert H, Cidlowski John A
Glucocorticoids are primary stress hormones necessary for life that function to maintain homeostasis. These hormones and their synthetic derivatives are widely used in the clinic to combat disease but are limited by development of resistance and by severe side effects. Understanding how glucocorticoids signal is crucial for developing safer and more effective glucocorticoids. Mechanistically glucocorticoid ligands induce glucocorticoid receptor (GR) homodimerization and regulation of gene expression. Here, we show that GR and mineralocorticoid receptor (MR) form molecular complexes with distinct transcriptional responses that alter the biological roles of GR. MR inhibited GR interaction with genomic DNA and diminished glucocorticoid-regulated gene expression as well as suppressed cell apoptosis induced by GR signaling. Provocatively, multiple therapeutic glucocorticoids differentially induced the GR-MR interaction revealing unknown drug effects that are exploitable for fine-tuning glucocorticoid drug treatments. Molecular modeling of the GR-MR complex predicted an interaction interface residing in the LBD of both GR and MR. Mutation of a key amino acid in the interface of GR compromised GR-MR interaction without affecting GR activity in a gene reporter assay. Overall, our findings uncovered unique crosstalk mechanisms between distinct nuclear receptors providing a novel mechanism of diversity in the action of glucocorticoids that may contribute to context-dependent GR signaling in human health and disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。