A small subset of mammary tumor-initiating cells (also known as breast cancer stem cells; bCSC), characterized by expression of different markers [CD44(high)/CD24(low)/epithelial-specific antigen (ESA)+], aldehyde dehydrogenase-1 (ALDH1) activity, and ability to form mammospheres under ultra-low attachment culture conditions, are suspected to evade conventional therapies leading to disease recurrence. Elimination of both therapy-sensitive epithelial tumor cells and therapy-resistant bCSC is therefore necessary for prevention of breast cancer. We have shown previously that a nontoxic small-molecule constituent of edible cruciferous vegetables (benzyl isothiocyanate; BITC) inhibits mammary cancer development in mouse mammary tumor virus-neu (MMTV-neu) transgenic mice by causing epithelial tumor cell apoptosis. The present study shows efficacy of BITC against bCSC in vitro and in vivo. Mammosphere formation frequency and CD44(high)/CD24(low)/ESA+ and/or ALDH1+ populations in cultured MCF-7 (estrogen receptor-positive) and SUM159 (triple-negative) human breast cancer cells were decreased significantly in the presence of plasma achievable concentrations of BITC. BITC administration in the diet (3 μmol BITC/g diet for 29 weeks) resulted in a marked decrease in bCSCs in the MMTV-neu mice tumors in vivo. Overexpression of full-length Ron as well as its truncated form (sfRon), but not urokinase-type plasminogen activator receptor, conferred near complete protection against BITC-mediated inhibition of bCSCs in MCF-7 cells. The BITC treatment downregulated protein levels of Ron and sfRon in cultured breast cancer cells and in tumor xenografts. Ron overexpression resulted in upregulation of bCSC-associated genes Oct-4, SOX-2, and Nanog. In conclusion, the present study indicates that BITC treatment eliminates bCSCs in vitro and in vivo.
Dietary chemopreventative benzyl isothiocyanate inhibits breast cancer stem cells in vitro and in vivo.
膳食化学预防剂异硫氰酸苄酯在体外和体内均能抑制乳腺癌干细胞
阅读:6
作者:Kim Su-Hyeong, Sehrawat Anuradha, Singh Shivendra V
| 期刊: | Cancer Prevention Research | 影响因子: | 2.600 |
| 时间: | 2013 | 起止号: | 2013 Aug;6(8):782-90 |
| doi: | 10.1158/1940-6207.CAPR-13-0100 | 研究方向: | 发育与干细胞、细胞生物学 |
| 疾病类型: | 乳腺癌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
