BACKGROUND: Cerium dioxide (CeO(2)) nanoparticles have potential therapeutic applications and are widely used for industrial purposes. However, the effects of these nanoparticles on primary human cells are largely unknown. The ability of nanoparticles to exacerbate pre-existing inflammatory disorders is not well documented for engineered nanoparticles, and is certainly lacking for CeO(2) nanoparticles. We investigated the inflammation-modulating effects of CeO(2) nanoparticles at noncytotoxic concentrations in human peripheral blood monocytes. METHODS: CD14(+) cells were isolated from peripheral blood samples of human volunteers. Cells were exposed to either 0.5 or 1 μg/mL of CeO(2) nanoparticles over a period of 24 or 48 hours with or without lipopolysaccharide (10 ng/mL) prestimulation. Modulation of the inflammatory response was studied by measuring secreted tumor necrosis factor-alpha, interleukin-1beta, macrophage chemotactic protein-1, interferon-gamma, and interferon gamma-induced protein 10. RESULTS: CeO(2) nanoparticle suspensions were thoroughly characterized using dynamic light scattering analysis (194 nm hydrodynamic diameter), zeta potential analysis (-14 mV), and transmission electron microscopy (irregular-shaped particles). Transmission electron microscopy of CD14(+) cells exposed to CeO(2) nanoparticles revealed that these nanoparticles were efficiently internalized by monocytes and were found either in vesicles or free in the cytoplasm. However, no significant differences in secreted cytokine profiles were observed between CeO(2) nanoparticle-treated cells and control cells at noncytotoxic doses. No significant effects of CeO(2) nanoparticle exposure subsequent to lipopolysaccharide priming was observed on cytokine secretion. Moreover, no significant difference in lipopolysaccharide-induced cytokine production was observed after exposure to CeO(2) nanoparticles followed by lipopolysaccharide exposure. CONCLUSION: CeO(2) nanoparticles at noncytotoxic concentrations neither modulate pre-existing inflammation nor prime for subsequent exposure to lipopolysaccharides in human monocytes from healthy subjects.
Cerium dioxide nanoparticles do not modulate the lipopolysaccharide-induced inflammatory response in human monocytes.
二氧化铈纳米颗粒不会调节人单核细胞中脂多糖诱导的炎症反应
阅读:5
作者:Hussain Salik, Al-Nsour Faris, Rice Annette B, Marshburn Jamie, Ji Zhaoxia, Zink Jeffery I, Yingling Brenda, Walker Nigel J, Garantziotis Stavros
| 期刊: | International Journal of Nanomedicine | 影响因子: | 6.500 |
| 时间: | 2012 | 起止号: | 2012;7:1387-97 |
| doi: | 10.2147/IJN.S29429 | 种属: | Human |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
