BACKGROUND: Spinal cord injury (SCI) causes loss of neurons and axons and results in motor and sensory function impairments. SCI elicits an inflammatory response and induces the infiltration of immune cells, predominantly macrophages, to the injured site. Decoy receptor 3 (DcR3), also known as tumor necrosis factor receptor superfamily member (TNFRSF)-6B, is a pleiotropic immunomodulator capable of inducing macrophage differentiation into the M2 phenotype and enhancing angiogenesis. Because M2 macrophages are crucial for the recovery of impaired motor functions, we ask whether DcR3 is beneficial for the functional recovery of locomotion in Sprague-Dawley (SD) rats after SCI. METHODS: Contusion injury of the spinal cord was performed using a New York University impactor at the ninth thoracic vertebrae, followed by intrathecal injection of 15 μg recombinant protein comprising DcR3 (DcR3.Fc) in 5 μl of normal saline as the treatment, or 5 μl of normal saline as the control, into the injury epicenter. Functional recovery was evaluated using an open-field test weekly up to 6 weeks after injury. The cavity size and myelin sparing in the rostral-to-caudal region, including the epicenter of the injury, were then examined in SCI rats by histological staining. The expression of anti-inflammatory cytokines and the presence of M2 macrophages were determined by quantitative real-time polymerase chain reaction (qPCR) and immunohistochemistry at 7 day after SCI. Statistical analysis was performed using a two-tailed Student's t test. RESULTS: Intrathecal administration of DcR3.Fc significantly improved locomotor function and reduced secondary injury with a smaller wound cavity and increased myelin sparing at the lesion site. Compared with the control group, DcR3.Fc-treated rats had increased vascularization at the injury epicenter along with higher levels of interleukin (IL)-4 and IL-10 and lower level of IL-1β on DcR3.Fc-treated rats at day 7 after SCI. Moreover, higher levels of arginase I (Arg I) and CD206 (M2 macrophage markers) and RECA-1 (endothelial marker) were observed in the epicenter on day 7 after SCI by immunofluorescence staining. CONCLUSIONS: These results indicated that DcR3.Fc may promote the M2 macrophage infiltration and enhanced angiogenesis at the lesion site, thus preserving a greater amount of spinal cord tissues and enhancing functional recovery after SCI.
The immunomodulator decoy receptor 3 improves locomotor functional recovery after spinal cord injury.
免疫调节剂诱饵受体 3 可改善脊髓损伤后的运动功能恢复
阅读:5
作者:Chiu Chuan-Wen, Huang Wen-Hung, Lin Shao-Ji, Tsai May-Jywan, Ma Hsu, Hsieh Shie-Liang, Cheng Henrich
| 期刊: | Journal of Neuroinflammation | 影响因子: | 10.100 |
| 时间: | 2016 | 起止号: | 2016 Jun 17; 13(1):154 |
| doi: | 10.1186/s12974-016-0623-6 | 研究方向: | 毒理研究 |
| 疾病类型: | 脊髓损伤 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
