OBJECTIVE: Brain death (BD) triggers important hemodynamic and inflammatory alterations, compromising the viability of organs suitable for transplantation. To better understand the microcirculatory alterations in donor lungs caused by BD. The present study investigated the pulmonary microcirculation in a rodent model of BD via intravital microscopy. METHODS: Male Wistar rats were anaesthetized and mechanically ventilated. They were trepanned and BD was induced through the increase in intracranial pressure. As control group, sham-operated (SH) rats were trepanned only. In both groups, expiratory O2 and CO2 were monitored and after three hours, a thoracotomy was performed, and a window was created to observe the lung surface using an epi-fluorescence intravital microscopy. Lung expression of intercellular adhesion molecule (ICAM)-1 and endothelial nitric oxide synthase (eNOS) was evaluated by immunohistochemistry, and cytokines were measured in lung samples. RESULTS: Three hours after the surgical procedures, pulmonary perfusion was 73% in the SH group. On the other hand, BD animals showed an important decrease in organ perfusion to 28% (p = 0.036). Lung microcirculatory compromise after BD induction was associated with an augmentation of the number of leukocytes recruited to lung tissue, and with a reduction in eNOS expression and an increase in ICAM-1 expression on lung endothelial cells. BD rats showed higher values of expiratory O2 and lower values of CO2 in comparison with SH animals after three hours of monitoring. CONCLUSION: Data presented showed that BD triggers an important hypoperfusion and inflammation in the lungs, compromising the donor pulmonary microcirculation.
Brain death effects on lung microvasculature in an experimental model of lung donor.
脑死亡对肺供体实验模型中肺微血管的影响
阅读:5
作者:Simas Rafael, Zanoni Fernando Luiz, Silva Raphael Dos Santos Coutinho E, Moreira Luiz Felipe Pinho
| 期刊: | Jornal Brasileiro De Pneumologia | 影响因子: | 3.000 |
| 时间: | 2020 | 起止号: | 2020 Feb 21; 46(2):e20180299 |
| doi: | 10.36416/1806-3756/e20180299 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
