Connective tissue growth factor (CTGF/CCN2) negatively regulates BMP-2 induced osteoblast differentiation and signaling.

结缔组织生长因子(CTGF/CCN2)负调控BMP-2诱导的成骨细胞分化和信号传导

阅读:7
作者:Mundy Christina, Gannon Maureen, Popoff Steven N
Connective tissue growth factor (CTGF/CCN2) and bone morphogenetic protein (BMP)-2 are both produced and secreted by osteoblasts. Both proteins have been shown to have independent effects in regulating osteoblast proliferation, maturation and mineralization. However, how these two proteins interact during osteoblast differentiation remains unknown. In this study, we utilized two cell culture model systems, osteoblasts derived from CTGF knockout (KO) mice and osteoblasts infected with an adenovirus which over-expresses CTGF (Ad-CTGF), to investigate the effects of CTGF and BMP-2 on osteoblast development and function in vitro. Contrary to a previously published report, osteoblast maturation and mineralization were similar in osteogenic cultures derived from KO and WT calvaria in the absence of BMP-2 stimulation. Interestingly, in KO and WT osteoblast cultures stimulated with BMP-2, the KO osteoblasts exhibited enhanced osteoblast differentiation. This increase in osteoblast differentiation was accompanied by increased protein levels of phosphorylated Smad 1/5/8 and mRNA expression levels of bone morphogenetic protein receptor Ib. We also examined osteoblast differentiation in cultures that were infected with an adenoviral-CTGF vector (Ad-CTGF) and in controls. Continuous over-expression of CTGF resulted in decreased osteoblast maturation and mineralization in both unstimulated and BMP-2 stimulated cultures. Impaired osteoblast differentiation in cultures over-expressing CTGF was accompanied by decreased protein levels of phosphorylated Smad 1/5/8. Collectively, the data from these studies demonstrate that CTGF acts to negatively regulate BMP-2 induced signaling and osteoblast differentiation, and warrant additional studies to determine the precise mechanism(s) responsible for this effect. J. Cell. Physiol. 229: 672-681, 2014. © 2013 Wiley Periodicals, Inc.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。