Defective telomere elongation and hematopoiesis from telomerase-mutant aplastic anemia iPSCs.

端粒酶突变型再生障碍性贫血 iPSC 的端粒延长缺陷和造血功能障碍

阅读:5
作者:Winkler Thomas, Hong So Gun, Decker Jake E, Morgan Mary J, Wu Chuanfeng, Hughes William M 5th, Yang Yanqin, Wangsa Danny, Padilla-Nash Hesed M, Ried Thomas, Young Neal S, Dunbar Cynthia E, Calado Rodrigo T
Critically short telomeres activate p53-mediated apoptosis, resulting in organ failure and leading to malignant transformation. Mutations in genes responsible for telomere maintenance are linked to a number of human diseases. We derived induced pluripotent stem cells (iPSCs) from 4 patients with aplastic anemia or hypocellular bone marrow carrying heterozygous mutations in the telomerase reverse transcriptase (TERT) or the telomerase RNA component (TERC) telomerase genes. Both mutant and control iPSCs upregulated TERT and TERC expression compared with parental fibroblasts, but mutant iPSCs elongated telomeres at a lower rate compared with healthy iPSCs, and the deficit correlated with the mutations' impact on telomerase activity. There was no evidence for alternative lengthening of telomere (ALT) pathway activation. Elongation varied among iPSC clones derived from the same patient and among clones from siblings harboring identical mutations. Clonal heterogeneity was linked to genetic and environmental factors, but was not influenced by residual expression of reprogramming transgenes. Hypoxia increased telomere extension in both mutant and normal iPSCs. Additionally, telomerase-mutant iPSCs showed defective hematopoietic differentiation in vitro, mirroring the clinical phenotype observed in patients and demonstrating that human telomere diseases can be modeled utilizing iPSCs. Our data support the necessity of studying multiple clones when using iPSCs to model disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。