Overweight and obesity, associated with various health complications, refer to abnormal or excessive fat accumulation conditions that harm health. Like humans, obesity is a growing problem in dogs, which may increase the risk of serious diseases such as diabetes and cancer. Mulberry leaf has shown potential anti-obesity and anti-diabetes effects in several studies. Our research studied the impact of mulberry leaf supplements in healthy old overweight dogs for 12 weeks. Blood and fecal samples were collected from the dogs before and after treatment for different analyses, including whole transcriptome and gut microbiome analysis. The Body Condition Score (BCS) and blood glucose levels were significantly decreased in all mulberry treatment groups, which justifies the anti-obesity effect of mulberry leaf in dogs. Throughout the whole transcriptome study, the downregulation of PTX3 and upregulation of PDCD-1, TNFRSF1B, RUNX3, and TICAM1 genes in the high mulberry group were found, which have been associated with anti-inflammatory effects in the literature. It may be an essential gene expression mechanism responsible for the anti-inflammatory and, subsequently, anti-obesity effects associated with mulberry leaf treatment, as confirmed by real-time polymerase chain reaction analysis. In microbiome analysis, Papillibacter cinnamivorans, related to the Mediterranean diet, which may cause anti-inflammatory effects, were abundant in the same treatment group. Further studies may be required to establish the gene expression mechanism and role of abundant bacteria in the anti-obesity effect of mulberry supplements in dogs. Overall, we propose mulberry leaves as a portion of food supplements for improving blood glucose levels and the anti-inflammation of blood in companion dogs.
Mulberry Leaf Supplements Effecting Anti-Inflammatory Genes and Improving Obesity in Elderly Overweight Dogs.
桑叶补充剂可影响抗炎基因并改善老年超重犬的肥胖状况
阅读:8
作者:Park Miey, Jaiswal Varun, Kim Kihyun, Chun Julan, Lee Mi-Jin, Shin Jae-Ho, Lee Hae-Jeung
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2022 | 起止号: | 2022 Dec 2; 23(23):15215 |
| doi: | 10.3390/ijms232315215 | 研究方向: | 炎症/感染 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
