Bone morphogenetic proteins (BMPs) are essential signalling molecules involved in developmental and pathological processes and are regulated in the matrix by secreted glycoproteins. One such regulator is BMP-binding endothelial cell precursor-derived regulator (BMPER) which can both inhibit and enhance BMP signalling in a context and concentration-dependent manner. Twisted gastrulation (Tsg) can also promote or ablate BMP activity but it is unclear whether Tsg and BMPER directly interact and thereby exert a synergistic function on BMP signalling. Here, we show that human BMPER binds to Tsg through the N-terminal BMP-binding region which alone more potently inhibits BMP-4 signalling than full-length BMPER. Additionally, BMPER and Tsg cooperatively inhibit BMP-4 signalling suggesting a synergistic function to dampen BMP activity. Furthermore, full-length BMPER is targeted to the plasma membrane via binding of its C-terminal region to cell surface heparan sulphate proteoglycans but the active cleavage fragment is diffusible. Small-angle X-ray scattering and electron microscopy show that BMPER has an elongated conformation allowing the N-terminal BMP-binding and C-terminal cell-interactive regions to be spatially separated. To gain insight into the regulation of BMPER bioavailability by internal cleavage, a disease-causing BMPER point mutation, P370L, previously identified in the acid-catalysed cleavage site, was introduced. The mutated protein was secreted but the mutation prevented intracellular cleavage resulting in a lack of bioactive cleavage fragment. Furthermore, mutant BMPER was extracellularly cleaved at a downstream site presumably becoming available due to the mutation. This susceptibility to extracellular proteases and loss of bioactive N-terminal cleavage fragment may result in loss of BMPER function in disease.
Internal cleavage and synergy with twisted gastrulation enhance BMP inhibition by BMPER.
内部裂解和与扭曲原肠胚形成协同作用增强 BMPER 对 BMP 的抑制作用
阅读:4
作者:Lockhart-Cairns Michael P, Lim Karen Tzia Wei, Zuk Alexandra, Godwin Alan R F, Cain Stuart A, Sengle Gerhard, Baldock Clair
| 期刊: | Matrix Biology | 影响因子: | 4.800 |
| 时间: | 2019 | 起止号: | 2019 Apr;77:73-86 |
| doi: | 10.1016/j.matbio.2018.08.006 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
