AIMS: Bioactives of Artemisia dracunculus L. (termed PMI 5011) have been shown to improve insulin action by increasing insulin signalling in skeletal muscle. However, it was not known if PMI 5011's effects are retained during an inflammatory condition. We examined the attenuation of insulin action and whether PMI 5011 enhances insulin signalling in the inflammatory environment with elevated cytokines. METHODS: Muscle cell cultures derived from lean, overweight and diabetic-obese subjects were used. Expression of pro-inflammatory genes and inflammatory response of human myotubes were evaluated by real-time polymerase chain reaction (RT-PCR). Insulin signalling and activation of inflammatory pathways in human myotubes were evaluated by multiplex protein assays. RESULTS: We found increased gene expression of monocyte chemoattractant protein 1 (MCP1) and TNFα (tumour necrosis factor alpha), and basal activity of the NFkB (nuclear factor kappa-light-chain-enhancer of activated B cells) pathway in myotubes derived from diabetic-obese subjects as compared with myotubes derived from normal-lean subjects. In line with this, basal Akt phosphorylation (Ser473) was significantly higher, while insulin-stimulated phosphorylation of Akt (Ser473) was lower in myotubes from normal-overweight and diabetic-obese subjects compared with normal-lean subjects. PMI 5011 treatment reduced basal phosphorylation of Akt and enhanced insulin-stimulated phosphorylation of Akt in the presence of cytokines in human myotubes. PMI 5011 treatment led to an inhibition of cytokine-induced activation of inflammatory signalling pathways such as Erk1/2 and IkBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha)-NFkB and moreover, NFkB target gene expression, possibly by preventing further propagation of the inflammatory response within muscle tissue. CONCLUSIONS: PMI 5011 improved insulin sensitivity in diabetic-obese myotubes to the level of normal-lean myotubes despite the presence of pro-inflammatory cytokines.
Artemisia dracunculus L. extract ameliorates insulin sensitivity by attenuating inflammatory signalling in human skeletal muscle culture.
龙蒿提取物通过减弱人类骨骼肌培养中的炎症信号来改善胰岛素敏感性
阅读:4
作者:Vandanmagsar B, Haynie K R, Wicks S E, Bermudez E M, Mendoza T M, Ribnicky D, Cefalu W T, Mynatt R L
| 期刊: | Diabetes Obesity & Metabolism | 影响因子: | 5.700 |
| 时间: | 2014 | 起止号: | 2014 Aug;16(8):728-38 |
| doi: | 10.1111/dom.12274 | 种属: | Human |
| 研究方向: | 信号转导 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
