Older adults with cardiovascular disease exhibit microvascular dysfunction and increased levels of reactive oxygen species (ROS). We hypothesized that microvascular impairments begin early in the disease process and can be improved by scavenging ROS. Forearm blood flow (Doppler ultrasound) was measured in 45 young (32 ± 2 yr old) adults (n = 15/group) classified as lean, obese, and metabolic syndrome (MetSyn). Vasodilation in response to endothelial (ACh) and vascular smooth muscle [nitroprusside (NTP) and epoprostenol (Epo)] agonists was tested before and after intra-arterial infusion of ascorbic acid to scavenge ROS. Vasodilation was assessed as a rise in relative vascular conductance (ml·min(-1)·dl(-1)·100 mmHg(-1)). ACh and NTP responses were preserved (P = 0.825 and P = 0.924, respectively), whereas Epo responses were lower in obese and MetSyn adults (P < 0.05) than in lean controls. Scavenging of ROS via infusion of ascorbic acid resulted in an increase in ACh-mediated (P < 0.001) and NTP-mediated (P < 0.001) relative vascular conductance across all groups, suggesting that oxidative stress influences vascular responsiveness in adults with and without overt cardiovascular disease risk. Ascorbic acid had no effect on Epo-mediated vasodilation (P = 0.267). These results suggest that obese and MetSyn adults exhibit preserved endothelium-dependent vasodilation with reduced dependence on prostacyclin and are consistent with an upregulation of compensatory vascular control mechanisms.
Microvascular function in younger adults with obesity and metabolic syndrome: role of oxidative stress.
年轻肥胖和代谢综合征患者的微血管功能:氧化应激的作用
阅读:7
作者:Limberg Jacqueline K, Harrell John W, Johansson Rebecca E, Eldridge Marlowe W, Proctor Lester T, Sebranek Joshua J, Schrage William G
| 期刊: | American Journal of Physiology-Heart and Circulatory Physiology | 影响因子: | 4.100 |
| 时间: | 2013 | 起止号: | 2013 Oct 15; 305(8):H1230-7 |
| doi: | 10.1152/ajpheart.00291.2013 | 研究方向: | 代谢 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
