Matrix metalloproteinase-10 promotes kidney fibrosis by transactivating β-catenin signaling.

基质金属蛋白酶-10 通过反式激活β-catenin信号通路促进肾脏纤维化

阅读:4
作者:Sun Xiaoli, Ren Qian, Liu Xi, Tan Huishi, Zhan Zhanji, Lin Enqing, Long Yinyi, Hong Xue, Zhou Lili, Liu Youhua
Kidney fibrosis is characterized by excessive accumulation of extracellular matrix (ECM) and serves as a hallmark of chronic kidney disease (CKD). The turnover of ECM is controlled by a family of matrix metalloproteinases (MMPs), endopeptidases that play a crucial role in ECM remodeling and other cellular processes. In this study, we demonstrate that MMP-10 was upregulated in a variety of animal models of kidney fibrosis and human kidney biopsies from CKD patients. Bioinformatics analyses and experimental validation reveal that MMP-10 activated β-catenin in a Wnt-independent fashion. Knockdown of endogenous MMP-10 expression in vivo inhibited β-catenin activation and ameliorated kidney injury and fibrotic lesions, whereas over-expression of exogenous MMP-10 aggravated β-catenin activation and kidney fibrosis after injury. We found that MMP-10 cleaved and activated heparin-binding EGF-like growth factor (HB-EGF) via ectodomain shedding, leading to EGF receptor (EGFR) tyrosine phosphorylation and β-catenin transactivation via a cascade of events involving extracellular signal-regulated kinases and glycogen synthase kinase-3β. Consistently, treatment with erlotinib, a small-molecule EGFR inhibitor, effectively mitigated MMP-10-mediated kidney injury and fibrotic lesions in a dose-dependent fashion. Furthermore, β-catenin activation reciprocally upregulated the expression of MMP-10, thereby perpetuating kidney damage by forming a vicious cycle. Collectively, these results underscore that MMP-10 promotes kidney fibrosis through EGFR-mediated transactivating β-catenin in a Wnt-independent fashion. Our findings suggest that targeting MMP-10 could be a novel strategy for treatment of fibrotic CKD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。