MicroRNA-142-3p improves vascular relaxation in uremia.

MicroRNA-142-3p 可改善尿毒症患者的血管舒张功能

阅读:5
作者:Kétszeri Máté, Kirsch Andrijana, Frauscher Bianca, Moschovaki-Filippidou Foteini, Mooslechner Agnes A, Kirsch Alexander H, Schabhuettl Corinna, Aringer Ida, Artinger Katharina, Pregartner Gudrun, Ekart Robert, Breznik Silva, Hojs Radovan, Goessler Walter, Schilcher Irene, Müller Helmut, Obermayer-Pietsch Barbara, Frank SaÅ¡a, Rosenkranz Alexander R, Eller Philipp, Eller Kathrin
BACKGROUND AND AIMS: Chronic kidney disease (CKD) is strongly associated with a high burden of cardiovascular morbidity and mortality. Therefore, we aimed to characterize the putative role of microRNAs (miR)s in uremic vascular remodelling and endothelial dysfunction. METHODS: We investigated the expression pattern of miRs in two independent end-stage renal disease (ESRD) cohorts and in the animal model of uremic DBA/2 mice via quantitative RT-PCR. Moreover, DBA/2 mice were treated with intravenous injections of synthetic miR-142-3p mimic and were analysed for functional and morphological vascular changes by mass spectrometry and wire myography. RESULTS: The expression pattern of miRs was regulated in ESRD patients and was reversible after kidney transplantation. Out of tested miRs, only blood miR-142-3p was negatively associated with carotid-femoral pulse-wave velocity in CKD 5D patients. We validated these findings in a murine uremic model and found similar suppression of miR-142-3p as well as decreased acetylcholine-mediated vascular relaxation of the aorta. Therefore, we designed experiments to restore bioavailability of aortic miR-142-3p in vivo via intravenous injection of synthetic miR-142-3p mimic. This intervention restored acetylcholine-mediated vascular relaxation. CONCLUSIONS: Taken together, we provide compelling evidence, both in humans and in mice, that miR-142-3p constitutes a potential pharmacological agent to prevent endothelial dysfunction and increased arterial stiffness in ESRD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。