The development of engineered tissues has progressed over the past 20 years from in vitro characterization to in vivo implementation. For musculoskeletal tissue engineering in particular, the emphasis of many of these studies was to select conditions that maximized functional and compositional gains in vitro. However, the transition from the favorable in vitro culture environment to a less favorable in vivo environment has proven difficult, and, in many cases, engineered tissues do not retain their preimplantation phenotype after even short periods in vivo. Our laboratory recently developed disc-like angle-ply structures (DAPS), an engineered intervertebral disc for total disc replacement. In this study, we tested six different preculture media formulations (three serum-containing and three chemically defined, with varying doses of transforming growth factor β3 [TGF-β3] and varying strategies to introduce serum) for their ability to preserve DAPS composition and metabolic activity during the transition from in vitro culture to in vivo implantation in a subcutaneous athymic rat model. We assayed implants before and after implantation to determine collagen content, glycosaminoglycan (GAG) content, metabolic activity, and magnetic resonance imaging (MRI) characteristics. A chemically defined media condition that incorporated TGF-β3 promoted the deposition of GAG and collagen in DAPS in vitro, the maintenance of accumulated matrix in vivo, and minimal changes in the metabolic activity of cells within the construct. Preculture in serum-containing media (with or without TGF-β3) was not compatible with DAPS maturation, particularly in the nucleus pulposus (NP) region. All groups showed increased collagen production after implantation. These findings define a favorable preculture strategy for the translation of engineered discs seeded with disc cells.
(*) Optimization of Preculture Conditions to Maximize the In Vivo Performance of Cell-Seeded Engineered Intervertebral Discs.
(*)优化预培养条件以最大限度地提高细胞接种工程化椎间盘的体内性能
阅读:9
作者:Martin John T, Gullbrand Sarah E, Mohanraj Bhavana, Ashinsky Beth G, Kim Dong Hwa, Ikuta Kensuke, Elliott Dawn M, Smith Lachlan J, Mauck Robert L, Smith Harvey E
| 期刊: | Tissue Engineering. Part a | 影响因子: | 0.000 |
| 时间: | 2017 | 起止号: | 2017 Sep;23(17-18):923-934 |
| doi: | 10.1089/ten.tea.2016.0491 | 研究方向: | 细胞生物学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
