Comprehensive Analysis of Kisspeptin Signaling: Effects on Cellular Dynamics in Cervical Cancer.

Kisspeptin信号传导的综合分析:对宫颈癌细胞动力学的影响

阅读:7
作者:Rodríguez-Sarmiento Deisy Yurley, Rondón-Villarreal Paola, Scarpelli-Pereira Pedro Henrique, Bouvier Michel
Kisspeptin, a key neuropeptide derived from the KISS1R gene, is renowned for its critical role in regulating the hypothalamic-pituitary-gonadal axis and reproductive hormone secretion. Beyond its primary function in reproductive biology, emerging research has illuminated its influence in various cancers, mediating significant effects through its interaction with the G protein-coupled receptor, kisspeptin receptor. This interaction has been implicated in modulating cellular processes such as proliferation and metastasis, making it a potential target for therapeutic intervention. Our study initially screened ten kisspeptin-10 analogs through cytotoxic effects of kisspeptin-10 (KP10) and its analogs in several cancer types, including cervical, prostate, breast, and gastric cancers, with a particular focus on cervical cancer, where the most profound effects were observed. Further exploration using kinase array assays revealed that these analogs specifically alter key kinases involved in cancer progression. Migration assays demonstrated a substantial decrease in cell motility, and Bioluminescence Resonance Energy Transfer assays confirmed these analogs' strong interactions with the kisspeptin receptor. Overall, our results indicate that these KP10 analogs not only hinder cervical cancer cell proliferation but also curtail migration through targeted modulation of kinase signaling, suggesting their potential as therapeutic agents in managing cervical cancer progression. This comprehensive approach underscores the therapeutic promise of exploiting kisspeptin signaling in cancer treatment strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。