Mass spectrometry for the molecular imaging of angiotensin metabolism in kidney.

质谱法用于肾脏血管紧张素代谢的分子成像

阅读:8
作者:Grobe Nadja, Elased Khalid M, Cool David R, Morris Mariana
To better understand the tissue distribution and activity of enzymes involved in angiotensin II (Ang II) processing, we developed a novel molecular imaging method using matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry. Mouse kidney sections (12 μm) were incubated with 10-1,000 μmol/l Ang II for 5-15 min at 37°C. The formed peptides Ang III and Ang-(1-7) were identified by MALDI-TOF/TOF. A third metabolite, Ang-(1-4), was generated from further degradation of Ang-(1-7). Enzymatic processing of Ang II was dose and time dependent and absent in heat-treated kidney sections. Distinct spatial distribution patterns (pseudocolor images) were observed for the peptides. Ang III was localized in renal medulla, whereas Ang-(1-7)/Ang-(1-4) was present in cortex. Regional specific peptide formation was confirmed using microdissected cortical and medullary biopsies. In vitro studies with recombinant enzymes confirmed activity of peptidases known to generate Ang III or Ang-(1-7) from Ang II: aminopeptidase A (APA), Ang-converting enzyme 2 (ACE2), prolyl carboxypeptidase (PCP), and prolyl endopeptidase (PEP). Renal medullary Ang III generation was blocked by APA inhibitor glutamate phosphonate. The ACE2 inhibitor MLN-4760 and PCP/PEP inhibitor Z-pro-prolinal reduced cortical Ang-(1-7) formation. Our results establish the power of MALDI imaging as a highly specific and information-rich analytical technique that will further aid our understanding of the role and site of Ang II processing in cardiovascular and renal pathologies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。