Bcl-XL/Bax proteins direct the fate of embryonic cortical precursor cells.

Bcl-XL/Bax蛋白决定胚胎皮层前体细胞的命运

阅读:3
作者:Chang Mi-Yoon, Sun Woong, Ochiai Wataru, Nakashima Kinichi, Kim Soo-Young, Park Chang-Hwan, Kang Jin Sun, Shim Jae-Won, Jo A-Young, Kang Chun-Sik, Lee Yong-Sung, Kim Jae-Sang, Lee Sang-Hun
In the developing mouse brain, the highest Bcl-X(L) expression is seen at the peak of neurogenesis, whereas the peak of Bax expression coincides with the astrogenic period. While such observations suggest an active role of the Bcl-2 family proteins in the generation of neurons and astrocytes, no definitive demonstration has been provided to date. Using combinations of gain- and loss-of-function assays in vivo and in vitro, we provide evidence for instructive roles of these proteins in neuronal and astrocytic fate specification. Specifically, in Bax knockout mice, astrocyte formation was decreased in the developing cortices. Overexpression of Bcl-X(L) and Bax in embryonic cortical precursors induced neural and astrocytic differentiation, respectively, while inhibitory RNAs led to the opposite results. Importantly, inhibition of caspase activity, dimerization, or mitochondrial localization of Bcl-X(L)/Bax proteins indicated that the differentiation effects of Bcl-X(L)/Bax are separable from their roles in cell survival and apoptosis. Lastly, we describe activation of intracellular signaling pathways and expression of basic helix-loop-helix transcriptional factors specific for the Bcl-2 protein-mediated differentiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。