Deciphering immune predictors of immunotherapy response: A multiomics approach at the pan-cancer level.

解读免疫疗法反应的免疫预测因子:泛癌水平的多组学方法

阅读:4
作者:Li Xuexin, Pan Lu, Li Weiyuan, Liu Bingyang, Xiao Chunjie, Chew Valerie, Zhang Xuan, Long Wang, Ginhoux Florent, Loscalzo Joseph, Buggert Marcus, Zhang Xiaolu, Sheng Ren, Wang Zhenning
Immune checkpoint blockade (ICB) therapy has transformed cancer treatment, yet many patients fail to respond. Employing single-cell multiomics, we unveil T cell dynamics influencing ICB response across 480 pan-cancer and 27 normal tissue samples. We identify four immunotherapy response-associated T cells (IRATs) linked to responsiveness or resistance and analyze their pseudotemporal patterns, regulatory mechanisms, and T cell receptor clonal expansion profiles specific to each response. Notably, transforming growth factor β1 (TGF-β1)+ CD4(+) and Temra CD8(+) T cells negatively correlate with therapy response, in stark contrast to the positive response associated with CXCL13+ CD4(+) and CD8(+) T cells. Validation with a cohort of 23 colorectal cancer (CRC) samples confirms the significant impact of TGF-β1+ CD4(+) and CXCL13+ CD4(+) and CD8(+) T cells on ICB efficacy. Our study highlights the effectiveness of single-cell multiomics in pinpointing immune markers predictive of immunotherapy outcomes, providing an important resource for crafting targeted immunotherapies for successful ICB treatment across cancers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。