Auto-oxidation and oligomerization of protein S on the apoptotic cell surface is required for Mer tyrosine kinase-mediated phagocytosis of apoptotic cells

凋亡细胞表面蛋白 S 的自氧化和寡聚化是 Mer 酪氨酸激酶介导的凋亡细胞吞噬作用所必需的

阅读:5
作者:Hiroshi Uehara, Emily Shacter

Abstract

Prompt phagocytosis of apoptotic cells prevents inflammatory and autoimmune responses to dying cells. We have previously shown that the blood anticoagulant factor protein S stimulates phagocytosis of apoptotic human B lymphoma cells by human monocyte-derived macrophages. In this study, we show that protein S must first undergo oxidative activation to stimulate phagocytosis. Binding of human protein S to apoptotic cells or to phosphatidylserine multilamellar vesicles promotes auto-oxidation of Cys residues in protein S, resulting in covalent, disulfide-linked dimers and oligomers that preferentially bind to and activate the human Mer tyrosine kinase (MerTK) receptor on the macrophages. The prophagocytic activity of protein S is eliminated when disulfide-mediated oligomerization is prevented, or when MerTK is blocked with neutralizing Abs. Protein S oligomerization is independent of phospholipid oxidation. The data suggest that membranes containing phosphatidylserine serve as a scaffold for protein S-protein S interactions and that the resulting auto-oxidation and oligomerization is required for the prophagocytic activity of protein S. In this way, apoptotic cells facilitate their own uptake by macrophages. The requirement for oxidative modification of protein S can explain why this abundant blood protein does not constitutively activate MerTK in circulating monocytes and tissue macrophages.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。