A crucial strategy employed by plants to enhance insect resistance is allocating amino acids into secondary metabolic pathways, ensuring the synthesis of specialized metabolites that confer resistance. The storage and redistribution of amino acids primarily occur in vacuole; therefore, transport mechanisms must exist to facilitate the directed extravasation of amino acids from vacuole to cytosol and feed them into secondary metabolism in response to stress. However, the specific amino acid transporter located in the vacuole responsible for amino acid distribution remains unclear. Here, we identify two tomato vacuolar amino acid transporters, SlAVT6A and SlAVT6B. SlAVT6A functions as the primary exporter, while SlAVT6B modulates transport capacity through SlAVT6A/SlAVT6B heterodimer formation. This system redirects amino acids to boost trichome density, terpene accumulation, and gibberellin synthesis, thereby strengthening defense against spider mites. Furthermore, SlWRKY57 coordinates both transporters by forming a complex with SlJAZ8, linking jasmonic acid (JA) signaling to amino acid homeostasis through metabolic reprogramming from primary to specialized pathways. The findings reveal a SlJAZ8-SlWRKY57-SlAVT6A/SlAVT6B module that enhances growth and resistance by allocating amino acid to secondary metabolic pathways, offering insights for improving resistance in metabolic-assisted breeding.
JA-Mediated Regulation of Amino Acid Homeostasis Adjusts Metabolic Flux and Enhances Spider Mite Tolerance via the SlJAZ8-SlWRKY57-SlAVT6s Module in Tomato.
JA介导的氨基酸稳态调节通过番茄中的SlJAZ8-SlWRKY57-SlAVT6s模块调节代谢通量并增强对红蜘蛛的耐受性
阅读:7
作者:Hao Yingchen, Wang Xiaolong, Guo Langchen, Xiang Lijun, Luo Enxi, Cao Peng, Liu Penghui, Zhong Yue, Li Chun, Lai Jun, Yang Jun, Wang Shouchuang
| 期刊: | Advanced Science | 影响因子: | 14.100 |
| 时间: | 2025 | 起止号: | 2025 Aug;12(31):e16717 |
| doi: | 10.1002/advs.202416717 | 研究方向: | 代谢 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
