A scheduler for rhythmic gene expression.

用于调控节律性基因表达的调度程序

阅读:8
作者:Gaidatzis Dimos, Graf-Landua Maike, Methot Stephen P, Wölk Michaela, Brancati Giovanna, Hauser Yannick P, Meeuse Milou, Nahar Smita, Braun Kathrin, van der Does Marit, Aluri Sirisha, Kohler Hubertus, Smallwood Sebastien, Großhans Helge
Genetic oscillators drive precisely timed gene expression, crucial for development and physiology. Using the C. elegans molting clock as a model, we investigate how oscillators can schedule the orderly expression of thousands of genes. Single cell RNA sequencing reveals a broad peak phase dispersion in individual issues, mirrored by rhythmic changes in chromatin accessibility at thousands of regulatory elements identified by time-resolved ATAC-seq. We develop a linear model to predict chromatin dynamics based on the binding of >200 transcription factors. This identifies nine key regulators acting additively to determine the peak phase and amplitude of each regulatory element. Strikingly, these factors can also generate constitutive, non-rhythmic activity through destructive interference. Validating its power, the model accurately predicts the impact of GRH-1/Grainyhead perturbation on both chromatin and transcript dynamics. This work provides a conceptual framework for understanding how combinatorial, non-cooperative transcription factor binding schedules complex gene expression patterns in development and other dynamic biological processes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。