INTRODUCTION: Glutamate represents the dominant neurotransmitter that conveys the light information to the brain, including the suprachiasmatic nucleus (SCN), the central pacemaker for the circadian system. The neuronal and astrocytic glutamate transporters are crucial for maintaining efficient glutamatergic signaling. In the SCN, glutamatergic nerve terminals from the retina terminate on vasoactive intestinal polypeptide (VIP) neurons, which are essential for circadian functions. To date, little is known about the role of the core circadian clock gene, Bmal1, in glutamatergic neurotransmission of light signal to various brain regions. METHODS: The aim of this study was to further elucidate the role of Bmal1 in glutamatergic neurotransmission from the retina to the SCN. We therefore examined the spontaneous rhythmic locomotor activity, neuronal and glial glutamate transporters, as well as the ultrastructure of the synapse between the retinal ganglion cells (RGCs) and the SCN in adult male Bmal1-/- mice. RESULTS: We found that the deletion of Bmal1 affects the light-mediated behavior in mice, decreases the retinal thickness and affects the vesicular glutamate transporters (vGLUT1, 2) in the retina. Within the SCN, the immunoreaction of vGLUT1, 2, glial glutamate transporters (GLAST) and VIP was decreased while the glutamate concentration was elevated. At the ultrastructure level, the presynaptic terminals were enlarged and the distance between the synaptic vesicles and the synaptic cleft was increased, indicative of a decrease in the readily releasable pool at the excitatory synapses in Bmal1-/-. CONCLUSION: Our data suggests that Bmal1 deletion affects the glutamate transmission in the retina and the SCN and affects the behavioral responses to light.
Loss of Bmal1 impairs the glutamatergic light input to the SCN in mice.
小鼠中 Bmal1 的缺失会损害 SCN 的谷氨酸能光输入
阅读:3
作者:Korkmaz Hüseyin, Anstötz Max, Wellinghof Tim, Fazari Benedetta, Hallenberger Angelika, Bergmann Ann Kathrin, Niggetiedt Elena, Güven Fatma Delâl, Tundo-Lavalle Federica, Purath Fathima Faiba A, Bochinsky Kevin, Gremer Lothar, Willbold Dieter, von Gall Charlotte, Ali Amira A H
| 期刊: | Frontiers in Cellular Neuroscience | 影响因子: | 4.000 |
| 时间: | 2025 | 起止号: | 2025 Feb 27; 19:1538985 |
| doi: | 10.3389/fncel.2025.1538985 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
