The backbone of therapy for elderly patients with myelodysplastic syndromes and acute myeloid leukemia consists of hypomethylating agents 5-aza-2'-deoxycytidine (DAC) and 5-azacytidine (AZA). However, resistance frequently emerges during treatment. To investigate the mechanisms of resistance, we generated DAC-resistant variants of the acute myeloid leukemia cell lines, MOLM-13 and SKM-1, through their prolonged cultivation in increasing concentrations of DAC. The resistant cell variants, MOLM-13/DAC and SKM-1/DAC, exhibited cross-resistance to cytarabine and gemcitabine, but remained sensitive to AZA. Existing studies have suggested that the loss of deoxycytidine kinase (DCK) may play an important role in DAC resistance. DCK is critical for DAC activation, but the precise mechanisms of its downregulation remain incompletely understood. We identified a novel point mutation (A180P) in DCK, which results in acquired DAC resistance. Although the DCK mRNA was actively transcribed, the mutant protein was not detected in DAC-resistant cells. The transfection of HEK293 cells with the mutant DCK, combined with proteasomal inhibition, revealed rapid proteasomal degradation, establishing a mechanistic link between the A180P mutation and DCK loss, not previously described. This highlights the importance of also evaluating DCK at the protein and/or enzymatic activity levels in patients. The loss of functional DCK impairs the phosphorylation of deoxynucleosides, conferring resistance to DAC, gemcitabine, and cytarabine, but AZA, phosphorylated by uridine-cytidine kinase, remains effective and may represent a therapeutic alternative for patients with acquired DAC resistance.
Acquired Resistance to Decitabine Associated with the Deoxycytidine Kinase A180P Mutation: Implications for the Order of Hypomethylating Agents in Myeloid Malignancies Treatment.
与脱氧胞苷激酶 A180P 突变相关的地西他滨获得性耐药:对髓系恶性肿瘤治疗中低甲基化药物顺序的影响
阅读:4
作者:Simonicova Kristina, Janotka Lubos, Kavcova Helena, Borovska Ivana, Sulova Zdena, Breier Albert, Messingerova Lucia
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 May 25; 26(11):5083 |
| doi: | 10.3390/ijms26115083 | 研究方向: | 肿瘤 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
