Background: Osteoporosis is frequently observed in patients with chronic pancreatitis, and both conditions are closely associated with systemic metabolic disorders. However, the underlying mechanisms linking chronic pancreatitis and osteoporosis remain unclear. Methods: In this study, we utilized high-performance liquid chromatography-mass spectrometry (HPLC-MS) to conduct metabolomics and lipidomics analyses on pancreatic, serum, and other tissues from a mouse model of chronic pancreatitis-induced osteoporosis (CP-OP), with the aim to elucidate the metabolism-related pathogenic mechanisms of CP-OP. Results: We identified over 405 metabolites and 445 lipids, and our findings revealed that several metabolites involving the tricarboxylic acid (TCA) cycle, as well as triacylglycerols and diacylglycerols with higher saturation, were significantly increased in the CP-OP model. In contrast, triglycerides with higher unsaturation were decreased. Differential pathways were enriched in n-3 long-chain polyunsaturated fatty acid metabolism in both pancreatic and bone tissues, and these pathways exhibited positive correlations with bone-related parameters. Furthermore, the modulation of these polyunsaturated fatty acids by Qingyi granules demonstrated significant therapeutic effects on CP-OP, as validated in mouse models. Conclusions: Through the metabolomics approach, we uncovered that disorders in polyunsaturated fatty acids play a critical role in the pathogenesis of CP-OP. This study not only enhances our understanding of the pathogenesis of CP-OP but also highlights the therapeutic potential of targeting polyunsaturated fatty acids as a future intervention strategy for osteoporosis treatment.
Metabolomics Approach Revealed Polyunsaturated Fatty Acid Disorders as Pathogenesis for Chronic Pancreatitis-Induced Osteoporosis in Mice.
代谢组学方法揭示多不饱和脂肪酸紊乱是小鼠慢性胰腺炎诱发骨质疏松症的发病机制
阅读:7
作者:Liu Xinlin, Hu Fenglin, Zhang Yunshu, Ma Shurong, Liu Haihua, Shang Dong, Yin Peiyuan
| 期刊: | Metabolites | 影响因子: | 3.700 |
| 时间: | 2025 | 起止号: | 2025 Mar 3; 15(3):173 |
| doi: | 10.3390/metabo15030173 | 研究方向: | 代谢 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
