Matrix Stiffness and Biochemistry Govern Colorectal Cancer Cell Growth and Signaling in User-Programmable Synthetic Hydrogels.

基质刚度和生物化学性质控制着用户可编程合成水凝胶中结直肠癌细胞的生长和信号传导

阅读:5
作者:Kopyeva Irina, Bretherton Ross C, Ayers Jessica L, Yu Ming, Grady William M, DeForest Cole A
Colorectal cancer (CRC) studies in vitro have been conducted almost exclusively on 2D cell monolayers or suspension spheroid cultures. Though these platforms have shed light on many important aspects of CRC biology, they fail to recapitulate essential cell-matrix interactions that often define in vivo function. Toward filling this knowledge gap, synthetic hydrogel biomaterials with user-programmable matrix mechanics and biochemistry have gained popularity for culturing cells in a more physiologically relevant 3D context. Here, using a poly(ethylene glycol)-based hydrogel model, we systematically assess the role of matrix stiffness and fibronectin-derived RGDS adhesive peptide presentation on CRC colony morphology and proliferation. Highlighting platform generalizability, we demonstrate that these hydrogels can support the viability and promote spontaneous spheroid or multicellular aggregate formation of six CRC cell lines that are commonly utilized in biomedical research. These gels are engineered to be fully degradable via a "biologically invisible" sortase-mediated reaction, enabling the triggered recovery of single cells and spheroids for downstream analysis. Using these platforms, we establish that substrate mechanics play a significant role in colony growth: soft conditions (∼300 Pa) encourage robust colony formation, whereas stiffer (∼2 kPa) gels severely restrict growth. Tuning the RGDS concentration did not affect the colony morphology. Additionally, we observe that epidermal growth factor receptor (EGFR) signaling in Caco-2 cells is influenced by adhesion ligand identity─whether the adhesion peptide was derived from collagen type I (DGEA) or fibronectin (RGDS)─with DGEA yielding a marked decrease in the level of downstream protein kinase phosphorylation. Taken together, this study introduces a versatile method to culture and probe CRC cell-matrix interactions within engineered 3D biomaterials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。