Integration of autonomic and metabolic regulation, including hepatic function, is a critical role played by the brain's hypothalamic region. Specifically, the paraventricular nucleus of the hypothalamus (PVN) regulates autonomic functions related to metabolism, such as hepatic glucose production. Although insulin can act directly on hepatic tissue to inhibit hepatic glucose production, recent evidence implicates that central actions of insulin within PVN also regulate glucose metabolism. However, specific central circuits responsible for insulin signaling with relation to hepatic regulation are poorly understood. As a heterogeneous nucleus essential to controlling parasympathetic motor output with notable expression of insulin receptors, PVN is an appealing target for insulin-dependent modulation of parasympathetic activity. Here, we tested the hypothesis that insulin activates hepatic-related PVN (PVN(hepatic)) neurons through a parasympathetic pathway. Using transsynaptic retrograde tracing, labeling within PVN was first identified 24 h after its expression in the dorsal motor nucleus of the vagus (DMV) and 72 h after hepatic injection. Critically, nearly all labeling in medial PVN was abolished after a left vagotomy, indicating that PVN(hepatic) neurons in this region are part of a central circuit innervating parasympathetic motor neurons. Insulin also significantly increased the firing frequency of PVN(hepatic) neurons in this subregion. Mechanistically, rapamycin pretreatment inhibited insulin-dependent activation of PVN(hepatic) neurons. Therefore, central insulin signaling can activate a subset of PVN(hepatic) neurons that are part of a unique parasympathetic network in control of hepatic function. Taken together, PVN(hepatic) neurons related to parasympathetic output regulation could serve as a key central network in insulin's ability to control hepatic functions.NEW & NOTEWORTHY Increased peripheral insulin concentrations are known to decrease hepatic glucose production through both direct actions on hepatocytes and central autonomic networks. Despite this understanding, how (and in which brain regions) insulin exerts its action is still obscure. Here, we demonstrate that insulin activates parasympathetic hepatic-related PVN neurons (PVN(hepatic)) and that this effect relies on mammalian target of rapamycin (mTOR) signaling, suggesting that insulin modulates hepatic function through autonomic pathways involving insulin receptor intracellular signaling cascades.
Insulin activates parasympathetic hepatic-related neurons of the paraventricular nucleus of the hypothalamus through mTOR signaling.
胰岛素通过 mTOR 信号通路激活下丘脑室旁核的副交感神经肝脏相关神经元
阅读:16
作者:Martins Dos Santos Karoline, Saunders Sandy E, Antunes Vagner R, Boychuk Carie R
| 期刊: | Journal of Neurophysiology | 影响因子: | 2.100 |
| 时间: | 2025 | 起止号: | 2025 Jan 1; 133(1):320-332 |
| doi: | 10.1152/jn.00284.2024 | 研究方向: | 神经科学 |
| 信号通路: | mTOR | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
