Recombinant human plasma gelsolin suppresses persistent neuroinflammation and restores hippocampal neurogenesis in murine model of decompression sickness

重组人血浆凝溶胶蛋白可抑制小鼠减压病模型中的持续性神经炎症并恢复海马神经发生

阅读:1
作者:Abid R Bhat ,Awadhesh K Arya ,Veena M Bhopale ,Zuha Imtiyaz ,Stephen R Thom

Abstract

Loss of plasma gelsolin (pGSN), a protein that lyses actin filaments, is implicated in the pathology of inflammatory and neurodegenerative diseases. We hypothesized that because pGSN is depleted in a murine model of decompression sickness (DCS), supplementation by administration of human recombinant (rhu-) pGSN would ameliorate inflammatory events. We observed that pGSN levels were persistently decreased in mice for at least 12 days postexposure to 790 kPa of air for 2 h. This decline was associated with elevated levels of inflammatory microparticles (MPs) in the blood and cervical lymph nodes, which previously were shown to cause neuroinflammation. In addition, these mice exhibited reduced expression of synaptic proteins, impaired neurogenesis and impaired cognitive and motor functions. Rhu-pGSN ameliorated the inflammatory changes and resulted in restored synaptic protein expression, neurogenesis, and neurological function. These findings demonstrate that neuronal dysfunction in our murine model of DCS is mediated by MPs and that rhu-pGSN can ameliorate injury even when administered in a delayed fashion.NEW & NOTEWORTHY A decrease in plasma gelsolin levels and the release of inflammatory microparticles (MPs) occur in response to high pressure followed by decompression, with expression of filamentous (F)-actin leading to persistent neuroinflammation and functional deficits lasting at least 12 days. The infusion of recombinant human plasma gelsolin lyses these MPs in decompressed mice, thereby alleviating particle-associated neuronal dysfunction. Rhu-gelsolin infusion may be beneficial as a prophylactic or treatment for decompression sickness.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。