Diabetic foot ulcers (DFUs) are a leading cause of disability and mortality, with endothelial dysfunction playing a key role in the development of non-healing ulcers. A primary driver of endothelial cell impairment in this context is endoplasmic reticulum (ER) stress, triggered by glycolipotoxicity, though the underlying mechanisms are not fully understood. In this study, we observed that diabetic mice displayed poor ulcer healing associated with reduced angiogenesis and downregulated Reticulocalbin 1 (RCN1) expression. Proteomic analysis in human umbilical vein endothelial cells (HUVECs) identified a strong link between RCN1 and the damaging effects of glycolipotoxicity on endothelial cell function, leading to impaired tubule formation, reduced migratory capacity, and increased apoptosis in endothelial cells. Mechanistic RNA sequencing analysis highlighted a significant role for RCN1 in regulating ER function. RCN1 overexpression alleviated ER stress by reducing Protein kinase R-like endoplasmic reticulum kinase (PERK) phosphorylation and C/EBP homologous protein (CHOP) expression, both induced by glycolipotoxicity or Thapsigargin (TG), while RCN1 silencing intensified these effects. Additionally, TRIM11-mediated ubiquitination, influenced by glycolipotoxicity, regulated RCN1 stability, specifically promoting angiogenesis through RCN1 modulation. RCN1 overexpression accelerated ulcer healing in diabetic mice by suppressing ER stress proteins and enhancing angiogenesis, whereas RCN1 inhibition further delayed ulcer healing. In human DFU samples, proteomic analysis revealed that low RCN1 levels were linked to disrupted ER functional proteins, with RCN1 serum levels decreasing as diabetes progressed to DFU. Following surgical debridement treatment, RCN1 levels increased in patients with improved DFU healing outcomes. These findings suggest that ER stress, initiated by RCN1 inhibition in response to glycolipotoxicity, leads to endothelial dysfunction and apoptosis, ultimately contributing to the non-healing of DFUs.
RCN1 downregulation-driven endoplasmic reticulum stress impairs endothelial function and diabetic foot ulcer healing.
RCN1 下调驱动的内质网应激会损害内皮功能和糖尿病足溃疡愈合
阅读:11
作者:Weng Zhiyan, Ren Xiaoyan, Lin Wanxin, Zheng Lifeng, Weng Renfu, Xie Liangxiao, Zhao Fengying, Yan Sunjie, Shen Ximei
| 期刊: | Cellular and Molecular Life Sciences | 影响因子: | 6.200 |
| 时间: | 2025 | 起止号: | 2025 Aug 25; 82(1):318 |
| doi: | 10.1007/s00018-025-05814-6 | 研究方向: | 代谢 |
| 疾病类型: | 糖尿病 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
