Identification of a Prg4-expressing articular cartilage progenitor cell population in mice.

小鼠关节软骨中表达 Prg4 的祖细胞群的鉴定

阅读:6
作者:Kozhemyakina Elena, Zhang Minjie, Ionescu Andreia, Ayturk Ugur M, Ono Noriaki, Kobayashi Akio, Kronenberg Henry, Warman Matthew L, Lassar Andrew B
OBJECTIVE: To generate knockin mice that express a tamoxifen-inducible Cre recombinase from the Prg4 locus (Prg4(GFPCreERt2) mice) and to use these animals to fate-map the progeny of Prg4-positive articular cartilage cells at various ages. METHODS: We crossed Prg4(GFPCreERt2) mice with Rosa26(floxlacZ) or Rosa26(mTmG) reporter strains, admin-istered tamoxifen to the double heterozygous offspring at different ages, and assayed Cre-mediated recom-bination by histochemistry and/or fluorescence microscopy. RESULTS: In 1-month-old mice, the expression of the Prg4(GFPCreERt2) allele mirrored the expression of endogenous Prg4 and, when tamoxifen was admin-istered for 10 days, caused Cre-mediated recombination in ∼70% of the superficial-most chondrocytes. Prg4(GFPCreERt2)-expressing cells were mostly confined to the top 3 cell layers of the articular cartilage in 1-month-old mice, but descendants of these cells were located in deeper regions of the articular cartilage in aged mice. On embryonic day 17.5, Prg4(GFPCreERt2)-expressing cells were largely restricted to the superficial-most cell layer of the forming joint, yet at ∼1 year, the progeny of these cells spanned the depth of the articular cartilage. CONCLUSION: Our results suggest that Prg4-expressing cells located at the joint surface in the embryo serve as a progenitor population for all deeper layers of the mature articular cartilage. Also, our findings indicate that Prg4(GFPCreERt2) is expressed by superficial chondrocytes in young mice, but expands into deeper regions of the articular cartilage as the animals age. The Prg4(GFPCreERt2) allele should be a useful tool for inducing efficient Cre-mediated recombination of loxP-flanked alleles at sites of Prg4 expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。