Development of p300-targeting degraders with enhanced selectivity and onset of degradation.

开发具有增强选择性和更快降解速度的p300靶向降解剂

阅读:4
作者:Marsh Graham P, Cooper Mark S, Goggins Sean, Reynolds Stephen J, Wheeler Dean F, Cresser-Brown Joel O, Arnold Robert E, Babcock Emily G, Hughes Gareth, Bosnakovski Darko, Kyba Michael, Ojeda Samuel, Harrison Drew A, Ott Christopher J, Maple Hannah J
p300 and CBP are paralogous epigenetic regulators that are considered promising therapeutic targets for cancer treatment. Small molecule p300/CBP inhibitors have so far been unable to differentiate between these closely related proteins, yet selectivity is desirable in order to probe their distinct cellular functions. Additionally, in multiple cancers, loss-of-function CREBBP mutations set up a paralog dependent synthetic lethality with p300, that could be exploited with a selective therapeutic agent. To address this, we developed p300-targeting heterobifunctional degraders that recruit p300 through its HAT domain using the potent spiro-hydantoin-based inhibitor, iP300w. Lead degrader, BT-O2C, demonstrates improved selectivity and a faster onset of action compared to a recently disclosed A 485-based degrader in HAP1 cells and is cytotoxic in CIC::DUX4 sarcoma (CDS) cell lines (IC(50) = 152-221 nM), significantly reducing expression of CDS target genes (ETV1, ETV4, ETV5). Taken together, our results demonstrate that BT-O2C represents a useful tool degrader for further exploration of p300 degradation as a therapeutic strategy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。