Complex opioid driven modulation of glutamatergic and cholinergic neurotransmission in a GABAergic brain nucleus associated with emotion, reward and addiction.

复杂的阿片类药物驱动调节与情绪、奖赏和成瘾相关的 GABA 能脑核中的谷氨酸能和胆碱能神经传递

阅读:4
作者:Chittajallu R, Vlachos A, Caccavano A P, Yuan X Q, Hunt S, Abebe D, London E, Pelkey K A, McBain C J
The medial habenula (mHb)/interpeduncular nucleus (IPN) circuitry is resident to divergent molecular, neurochemical and cellular components which, in concert, perform computations to drive emotion, reward and addiction behaviors. Although housing one of the most prominent mu opioid receptor (mOR) expression levels in the brain, remarkably little is known as to how they impact mHb/IPN circuit function at the granular level. In this study, our systematic functional and pharmacogenetic analyses demonstrate that mOR activation attenuates glutamatergic signaling whilst producing an opposing potentiation of glutamatergic/cholinergic co-transmission mediated by mHb substance P and cholinergic neurons, respectively. Intriguingly, this latter non-canonical augmentation is developmentally regulated only emerging during later postnatal stages. In addition, we reveal that specific potassium channels act as a molecular brake on nicotinic receptor signaling in the IPN with the opioid mediated potentiation of this arm of neurotransmission being operational only following attenuation of Kv1 function. Thus, mORs play a complex role in shaping the salience of distinct afferent inputs and transmitter modalities that ultimately influences synaptic recruitment of downstream GABAergic IPN neurons. Together, these observations provide a framework for future investigations aimed at identifying the neural underpinnings of maladaptive behaviors that can emerge when opioids, including potent synthetic analogs such as fentanyl, modulate or hijack this circuitry during the vulnerable stages of adolescence and in adulthood.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。