α/β-Hydrolase domain-containing 6 (ABHD6) negatively regulates the surface delivery and synaptic function of AMPA receptors.

α/β-水解酶结构域蛋白6 (ABHD6) 负调控AMPA受体的表面递送和突触功能

阅读:6
作者:Wei Mengping, Zhang Jian, Jia Moye, Yang Chaojuan, Pan Yunlong, Li Shuaiqi, Luo Yiwen, Zheng Junyuan, Ji Jianguo, Chen Jianguo, Hu Xinli, Xiong Jingwei, Shi Yun, Zhang Chen
In the brain, AMPA-type glutamate receptors are major postsynaptic receptors at excitatory synapses that mediate fast neurotransmission and synaptic plasticity. α/β-Hydrolase domain-containing 6 (ABHD6), a monoacylglycerol lipase, was previously found to be a component of AMPA receptor macromolecular complexes, but its physiological significance in the function of AMPA receptors (AMPARs) has remained unclear. The present study shows that overexpression of ABHD6 in neurons drastically reduced excitatory neurotransmission mediated by AMPA but not by NMDA receptors at excitatory synapses. Inactivation of ABHD6 expression in neurons by either CRISPR/Cas9 or shRNA knockdown methods significantly increased excitatory neurotransmission at excitatory synapses. Interestingly, overexpression of ABHD6 reduced glutamate-induced currents and the surface expression of GluA1 in HEK293T cells expressing GluA1 and stargazin, suggesting a direct functional interaction between these two proteins. The C-terminal tail of GluA1 was required for the binding between of ABHD6 and GluA1. Mutagenesis analysis revealed a GFCLIPQ sequence in the GluA1 C terminus that was essential for the inhibitory effect of ABHD6. The hydrolase activity of ABHD6 was not required for the effects of ABHD6 on AMPAR function in either neurons or transfected HEK293T cells. Thus, these findings reveal a novel and unexpected mechanism governing AMPAR trafficking at synapses through ABHD6.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。