Noradrenergic and cholinergic innervation of the normal human heart and changes associated with cardiomyopathy.

正常人心脏的去甲肾上腺素能和胆碱能神经支配以及与心肌病相关的变化

阅读:10
作者:Hanna Peter, Hoover Donald B, Kirkland Logan G, Smith Elizabeth H, Poston Megan D, Peirce Stanley G, Garbe Chloe G, Cha Steven, Mori Shumpei, Brennan Jaclyn A, Armour John Andrew, Rytkin Eric, Efimov Igor R, Ajijola Olujimi A, Ardell Jeffrey L, Shivkumar Kalyanam
Autonomic nerves are crucial in cardiac function and pathology. However, data on the distribution of cholinergic and noradrenergic nerves in normal and pathologic human hearts is lacking. Nonfailing donor hearts were pressure-perfusion fixed, imaged, and dissected. Left ventricular cardiomyopathy samples were also obtained. Fixed frozen sections were immunostained for nerves, and adjacent tissue underwent clearing for 3D visualization. Cholinergic and noradrenergic nerves were evenly abundant in both atria, except the sinoatrial node, where vesicular acetylcholine transporter (VAChT) nerves were dominant. Noradrenergic consistently outnumbered cholinergic nerves in right (RV) and left ventricular (LV) regions. Noradrenergic innervation of LV regions varied between donors. Cholinergic innervation was higher in RV compared to LV samples, which generally had reduced VAChT nerves. Marked neural remodeling occurred in three cardiomyopathy cases. Tyrosine hydroxylase (TH) nerve density was increased in the right atrial appendage, and all nerves showed a trend to decrease in the left atrial appendage. Cholinergic innervation was reduced in the LV, and TH innervation was heterogeneous. Noradrenergic nerves were present in granulation tissue but absent in regions of dense scar. Some border zone regions had reduced TH innervation but no hyperinnervation. Dual innervation of most atrial regions supports balanced regulation of atrial function. Higher cholinergic input to the sinoatrial node favors vagal dominance in heart rate regulation. Innervation patterns support a significant role of noradrenergic input to the ventricle, especially on the left. Both atrial and ventricular nerves remodel in cardiomyopathy, providing a foundation for asymmetric neural input and dysregulation of cardiac electromechanical function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。