L-DOPA Induces Spatially Discrete Changes in Gene Expression in the Forebrain of Mice with a Progressive Loss of Dopaminergic Neurons.

左旋多巴可诱导多巴胺能神经元逐渐丧失的小鼠前脑基因表达发生空间离散变化

阅读:5
作者:Radlicka-Borysewska Anna, Ziemiańska Magdalena, Zięba Mateusz, Szumiec Łukasz, Bagińska Monika, Chrószcz Magdalena, Gołda Sławomir, Hajto Jacek, Korostyński Michał, Kreiner Grzegorz, Pera Joanna, Piechota Marcin, Rodriguez Parkitna Jan
L-3,4-Dihydroxyphenylalanine (L-DOPA) is effective at alleviating motor impairments in Parkinson's disease (PD) patients but has mixed effects on nonmotor symptoms and causes adverse effects after prolonged treatment. Here, we analyzed the spatial profile of L-DOPA-induced gene expression in the forebrain of mice with an inducible progressive loss of dopaminergic neurons (the TIF-IA(DATCreERT2) strain), with a focus on the similarities and differences in areas relevant to different PD symptoms. The animals received a 14-day L-DOPA treatment, and 1 h after the final drug injection, a spatial transcriptome analysis was performed on coronal forebrain sections. A total of 121 genes were identified as being regulated by L-DOPA. We found that the treatment had widespread effects extending beyond the primary areas involved in dopamine-dependent movement control. An unsupervised clustering analysis of the transcripts recapitulated the forebrain anatomy and indicated both ubiquitous and region-specific effects on transcription. The changes were most pronounced in layers 2/3 and 5 of the dorsal cortex and the dorsal striatum, where a robust increase in the abundance of activity-regulated transcripts, including Fos, Egr1, and Junb, was observed. Conversely, transcripts with a decreased abundance, e.g., Plekhm2 or Pgs1, were identified primarily in the piriform cortex, the adjacent endopiriform nucleus, and the claustrum. Taken together, our spatial analysis of L-DOPA-induced alterations in gene expression reveals the anatomical complexity of treatment effects, identifying novel genes affected by the drug, as well as molecular activation in brain areas relevant to the nonmotor symptoms of PD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。