Clinical Effects of "Selective Drug" Regulating Vagus Nerve Signal Pathway in Vagally-Mediated Atrial Fibrillation.

选择性药物调节迷走神经信号通路治疗迷走神经介导的心房颤动的临床疗效

阅读:8
作者:Lou Xue, Lu Yanmei, Tang Baopeng, Zhou Xianhui
BACKGROUND The cardiac autonomic nervous system plays a crucial role in genesis and development of atrial fibrillation (AF) through the G protein signal transduction pathway. Therefore, intervening in the G protein signal transduction pathway may be a new "selective drug" method to regulate autonomic nerve activity to prevent vagally-mediated AF. MATERIAL AND METHODS Seventeen adult beagles were randomized into 3 groups: shame-operation control group (group A, n=5), empty vector gene control group (group B, n=6), and Gαi2ctp gene experimental group (group C, n=6). Group A was injected with normal saline into the anterior atrial wall, and group B and group C animals were injected with recombinant adenovirus with empty vector or Gαi2ctp vector in the same region. AF was induced by the method of rapid atrial pacing in groups B and C. To determine the clinical effect of vagal modulation, the effective refractory periods (ERP) and field action potential duration (FAPD) were evaluated by electrophysiological study. The expression levels of tyrosine hydroxylase (TH) and choline acetyl transferase (CHAT) in different parts were determined with immunohistochemistry. RESULTS After successful Gai2ctp gene transfer, in group B, the ERP and FAPD significantly decreased (P<0.05), and TH and CHAT expression observably increased (P<0.05), while those differences were absent between groups A and C (P>0.05). CONCLUSIONS Recombinant adenovirus-mediated overexpression of Gαi2ctp in canine myocardial cells can interfere with the activity of the vagus nerve, reverse the development and progression of electrical remodeling, and reduce the incidence of AF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。