Metazoan nucleosomes harboring H3K79 methylation (H3K79me) deposited by the methyltransferase DOT1L (disruptor of telomeric silencing 1-like) decorate actively transcribed genes. While DOT1L regulates transcription and the pathogenesis of leukemia and neurological disorders, the role of H3K79me remains elusive. Here, we reveal a functional synergism between H3K79me and H3K36 trimethylation (H3K36me3) in regulating gene expression and cellular differentiation. Simultaneous catalytic inactivation of DOT1L and the H3K36 methyltransferase SETD2 (SET domain containing 2) leads to hyperactive transcription and failures in neural differentiation. H3K79me/H3K36me3 loss causes increased transcription elongation, gained chromatin accessibility at a group of enhancers, and increased recruitment of TEAD4 (TEA domain transcription factor 4) and its coactivator YAP1 (Yes-associated protein 1) to these enhancers. Furthermore, YAP-TEAD inhibition restores the expression levels of genes hyperactivated by H3K79me/H3K36me3 loss. Together, we demonstrate a synergism of H3K79me and H3K36me3 in regulating transcription and cell fate transition, unveil the underlying mechanisms, and provide insight into targeting diseases driven by misregulation/mutations of DOT1L and/or SETD2.
H3K79 methylation and H3K36 trimethylation synergistically regulate gene expression in pluripotent stem cells.
H3K79甲基化和H3K36三甲基化协同调节多能干细胞中的基因表达
阅读:8
作者:Cooke Emmalee W, Zeng Cheng, Nur Suza Mohammad, Jia Yunbo, Huang Aileen, Chen Jiwei, Gao Peidong, Chen Fei Xavier, Jin Fulai, Cao Kaixiang
| 期刊: | Science Advances | 影响因子: | 12.500 |
| 时间: | 2025 | 起止号: | 2025 Jul 4; 11(27):eadt8765 |
| doi: | 10.1126/sciadv.adt8765 | 靶点: | H3 |
| 研究方向: | 发育与干细胞、细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
