Epigenetic regulation of intracellular branched-chain amino acid homeostasis maintains a normal lifespan.

细胞内支链氨基酸稳态的表观遗传调控维持着正常的寿命

阅读:5
作者:Park Sejung, Liu Yan, Lim Suji, Ryu Hong-Yeoul, Ahn Seong Hoon
Cells experience a progressive decline in function and lifespan, accompanied by epigenetic changes. Here, we show that intracellular BCAA (icBCAA) homeostasis is regulated by histone H3K4 and H3K121 in budding yeast. Using a comprehensive H3/H4 mutant library, we identified residues essential for lifespan maintenance linked to BCAA metabolism. Among these, H3K4A/R and H3K121A mutations led to significant transcriptional changes in genes involved in BCAA biosynthesis and catabolism, accompanied by abnormally elevated icBCAA levels. Consistent with the upregulation of BAT1, ILV6, and ADH1 genes in the H3K121A mutant, chromatin immunoprecipitation revealed increased H3K4me3 at their promoters. The genetic perturbation of BAT1 and BAT2 restored icBCAA balance and partially rescued lifespan defects in H3K4 or H3K121 mutants. Additionally, H3K4 and H3K121 mutations affected lifespan regulation through TORC1 signaling. Our findings suggest that the epigenetic control of BCAA metabolism, specifically through the modification of histone residues, contributes to maintaining metabolic homeostasis and replicative lifespan.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。