OBJECTIVE: To investigate the effect of tanshinone IIA pretreatment on acute renal injury in lipopolysaccharide (LPS)-induced septic mice and explore the possible mechanism. METHODS: Thirty C57BL/6 mice were randomized for treatment with saline (control), 10 mg/kg LPS for 24 h, or 10 mg/kg tanshinone IIA 15 min before LPS treatment. After the treatments, serum creatinine and blood urea nitrogen levels of the mice were detected, renal pathologies were observed with PAS staining, and renal expressions of RIP3, cleaved caspase-3 and p(18)-FUNDC1 were detected with Western blotting. In the cell experiment, cultured normal human renal tubular epithelial cells (HK-2) were treated with LPS (10 mg/mL), LPS+ siNC, LPS+ siRIP3, or LPS+tanshinone IIA (10 mg/L), and the changes in cell apoptosis were examined with TUNEL staining; Western blotting was performed to detect the expression levels of RIP3, cleaved caspase-3 and p(18)-FUNDC1, and qRT-PCR was used to detect the expression of RIP3 mRNA. RESULTS: LPS challenge for 24 h significantly increased serum creatinine and blood urea nitrogen levels in the mice, caused obviously damages in the proximal renal tubules, and increased renal expressions of RIP3, cleaved caspase-3 and p(18)-FUNDC1 proteins. Tanshinone IIA pretreatment significantly improved LPS-induced renal injury in the mice, alleviated apoptosis of the renal cells, and inhibited the expressions of RIP3, cleaved caspase-3 and p(18)-FUNDC1 proteins. In HK-2 cells, LPS stimulation significantly increased the protein expressions of RIP3, cleaved caspase-3 and p(18)-FUNDC1 and induced obvious cell apoptosis. Pretreatment with tanshinone IIA strongly inhibited the expression of RIP3 and p(18)-FUNDC1 and reduced LPS-induced apoptosis of HK-2 cells. CONCLUSION: Tanshinone IIA can reduce LPS-induced apoptosis of renal tubular epithelial cells by inhibiting RIP3/FUNDC1 signal pathway.
[Tanshinone IIA alleviates lipopolysaccharide-induced renal tubular epithelial cell apoptosis by inhibiting RIP3/FUNDC1 signaling pathway].
丹参酮IIA通过抑制RIP3/FUNDC1信号通路减轻脂多糖诱导的肾小管上皮细胞凋亡
阅读:9
作者:Zhang S, Su B, Wang L, Tang S, Chen G
| 期刊: | Nan fang yi ke da xue xue bao = Journal of Southern Medical University | 影响因子: | 0.000 |
| 时间: | 2022 | 起止号: | 2022 Dec 20; 42(12):1852-1857 |
| doi: | 10.12122/j.issn.1673-4254.2022.12.14 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
