AHNAK2 confers 5-fluorouracil resistance in colorectal cancer via activation of the AKT/GSK-3β signaling axis.

AHNAK2 通过激活 AKT/GSK-3β 信号轴赋予结直肠癌 5-氟尿嘧啶耐药性

阅读:4
作者:Xie Mianjiao, Lin Wanlin, Du Yongtao, Li Yunlong, Li Shisen
AHNAK nucleoprotein 2 (AHNAK2) is implicated in tumor progression and survival signaling, yet its role in chemotherapy resistance, particularly in colorectal cancer (CRC), remains under investigation. In the present study, the GEPIA database and Kaplan-Meier Plotter database were employed to uncover the correlation between high AHNAK2 expression and unfavorable prognostic outcomes in CRC patients. The expression of AHNAK2 in 5-fluorouracil (5-FU)-resistant CRC tissues was validated by immunohistochemical staining, quantitative real-time PCR, and western blot analysis. Then, 5-FU-resistant CRC cell lines LoVo/5-FU and HCT116/5-FU were developed through consecutive treatment of cells with 5-FU and then subjected to gene knockdown or overexpression. A series of assays, including CCK-8 assay, colony formation assay, flow cytometry, wound healing assay, transwell assay, and tumor xenograft mouse model, were conducted to evaluate the effects of AHNAK2 on 5-FU resistance. We observed a significantly increased expression of AHNAK2 in 5-FU-resistant tumor tissues compared to 5-FU-sensitive ones. This elevated expression was negatively associated with the prognosis of CRC patients. Knockdown of AHNAK2 in LoVo/5-FU cells reduced 5-FU resistance in CRC, whereas overexpression of AHNAK2 in HCT116/5-FU cells promoted resistance, both in vitro and in vivo. Mechanistically, AHNAK2 knockdown suppressed the expression of proteins such as PCNA, CDK4, p-AKT/AKT, and p-GSK-3β/GSK-3β, while enhancing the expression of cleaved caspase-3 and E-cadherin in LoVo/5-FU cells. Conversely, AHNAK2 overexpression in HCT116/5-FU cells produced the opposite effects. Collectively, these findings demonstrate that AHNAK2 reduces the chemosensitivity of CRC to 5-FU by activating the AKT/GSK-3β signaling pathway, underscoring its potential as a therapeutic target to improve CRC treatment strategies.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。