This study aimed to investigate the therapeutic effects and underlying mechanisms of adipose-derived stem cell exosomes (ADSCs-exo) in ameliorating fibrosis in a rat model. ADSCs were isolated and cultured from rat adipose tissue, and ADSCs-exo were extracted via ultracentrifugation. Urethral fibrosis was induced by local injection of TGF-β1 (10 μg), followed by ADSCs-exo treatment. Urodynamic parameters were evaluated, and histological changes were evaluated using hematoxylin and eosin and Masson staining. Transcriptomic analysis and pathway enrichment were performed to identify signaling pathways regulated by ADSCs-exo. In vitro, urinary fibroblasts were stimulated with TGF-β1 and treated with ADSCs-exo alone or in combination with PDGF-BB (agonist) or imatinib (inhibitor). ADSCs-exo treatment significantly improved urodynamic function, reduced collagen deposition, and suppressed fibrosis-related protein expression in vivo. Transcriptomic analysis revealed platelet-derived growth factor and TGF-β pathways as major contributors to fibrosis. In vitro, ADSCs-exo significantly reduced TGF-β1-induced fibroblast proliferation, migration, and fibrosis-related protein expression, effects that were reversed by PDGF-BB and enhanced by imatinib. These findings were consistent in vivo, further supporting the hierarchical regulation of fibrosis-related signaling by ADSCs-exo. ADSCs-exo mitigates urethral stricture fibrosis by primarily suppressing the TGF-β/Smad pathway, thereby downregulating the downstream PDGFR-β/RAS/ERK axis, highlighting its therapeutic potential as a cell-free therapeutic approach for fibrotic urethral disease.
Adipose-derived stem cell exosomes alleviate TGF-β1-induced urethral stricture fibrosis by suppressing the TGF-β/Smad pathway and downstream PDGFR-β/RAS/ERK signaling.
脂肪来源干细胞外泌体通过抑制 TGF-β/Smad 通路和下游 PDGFR-β/RAS/ERK 信号传导来缓解 TGF-β1 诱导的尿道狭窄纤维化
阅读:11
作者:Liang Tao, Deng Chao, Guo Hang, Dai Zhenghao, Jiang Yiwen, Lu Yuting, Chen Weiguo
| 期刊: | Journal of Cell Communication and Signaling | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Jun 12; 19(2):e70025 |
| doi: | 10.1002/ccs3.70025 | 研究方向: | 发育与干细胞、细胞生物学 |
| 信号通路: | TGF-β | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
