5-Fluorouracil (5-FU) is a primary chemotherapeutic agent for treating gastric cancer (GC), yet resistance to 5-FU frequently limits its effectiveness and contributes to poor patient outcomes. This study investigated the molecular mechanisms by which uridine-cytidine kinase 2 (UCK2) influences 5-FU resistance in GC. Using a genome-wide CRISPR knockout (GeCKO v2) library, we identified UCK2 as a critical gene for 5-FU sensitivity in GC cells. In 5-FU-resistant GC cells, the transcription factor GLI2 and the E3 ubiquitin ligase HRD1 were both upregulated, while UCK2 expression was significantly reduced. Functional assays demonstrated that lowering UCK2 or increasing HRD1 expression enhanced GC cell proliferation and 5-FU resistance, with HRD1 mediating 5-FU resistance through the ubiquitination and degradation of UCK2. Furthermore, GLI2 overexpression promoted cell proliferation and resistance to 5-FU by transcriptionally activating HRD1. In vivo experiments confirmed that GLI2 knockdown effectively reduced tumor growth under 5-FU treatment, an effect that was reversed by HRD1 overexpression. These findings reveal the GLI2-HRD1-UCK2 axis as a crucial pathway for modulating 5-FU resistance in GC, suggesting new potential targets for overcoming chemoresistance in GC therapy.
GLI2-HRD1 axis facilitates 5-FU resistance in gastric cancer cells by regulating ubiquitination degradation of UCK2.
GLI2-HRD1轴通过调节UCK2的泛素化降解促进胃癌细胞对5-FU的耐药性
阅读:9
作者:Xue Chaorong, Zhang Xuanzi, Yu Wanling, Lin Hanbin, Zhang Junrong, Liu Jiawen, Weng Zongqi, Ouyang Manduo, Lin Xinjian
| 期刊: | Translational Oncology | 影响因子: | 4.100 |
| 时间: | 2025 | 起止号: | 2025 Aug;58:102423 |
| doi: | 10.1016/j.tranon.2025.102423 | 研究方向: | 细胞生物学 |
| 疾病类型: | 胃癌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
