BACKGROUND: Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis globally and a major cause of renal failure. Immune dysregulation drives its pathogenesis. This study identifies novel genes as potential diagnostic and therapeutic targets, elucidating immune mechanisms in IgAN. METHODS: Immune cell infiltration analysis was conducted to explore the abnormal regulation of immune cells in IgAN. Weighted gene co-expression network analysis (WGCNA) was integrated with protein-protein interaction (PPI) analysis to identify hub genes associated with dendritic cells (DCs) in IgAN. Receiver operating characteristic (ROC) curve analysis and machine learning algorithms were employed to screen for DC-related diagnostic biomarkers from the dataset. Multiple bioinformatics methods were utilized to reveal shared molecular pathways. The findings were further validated through in vivo and vitro intervention experiments. RESULTS: WGCNA, Cytoscape, and three machine learning models collectively identified hub genes (IKZF1, MPEG1, CCR2, CCR5, and CCR7) that are significantly associated with DC immunity. Among these, IKZF1 was pinpointed as a key hub gene and a potential diagnostic biomarker for DC-related immune responses. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and gene set enrichment analysis (GSEA) further revealed substantial differences in the biological processes, signaling pathways, and immune characteristics of DCs. RT-qPCR and immunofluorescence analyses confirmed enhanced infiltration of IKZF1(+) DCs in the tissues of both IgAN mice and anti-Thy1 nephritis rats. Mechanistically, IKZF1 promotes inflammation by mediating the production of pro-inflammatory factors and enhancing antigen presentation in DCs; this effect can be mitigated by siIKZF1 or lenalidomide treatment under LPS-induced inflammatory conditions in vitro. Consistently, treatment with lenalidomide, a molecular degrader of IKZF1, in anti-Thy1 nephritis models effectively alleviated renal damage and reduced inflammatory cell infiltration. CONCLUSIONS: This study delineated key patterns of immune cell infiltration in IgAN and identified diagnostic biomarkers associated with DCs, offering valuable insights into the potential therapeutic targeting of IKZF1(+) DCs.
IKZF1 as a potential therapeutic target for dendritic cell-mediated immunotherapy in IgA nephropathy.
IKZF1 作为 IgA 肾病中树突状细胞介导免疫疗法的潜在治疗靶点
阅读:3
作者:Peng Fei, Sheng Chunjia, He Jiayi, Zhou Yena, Qu Yilun, Duan Shuwei, Zhao Yinghua, Xia Jikai, Wu Jie, Cai Guangyan, Wu Lingling, Zhang Chuyue, Chen Xiangmei
| 期刊: | Cell Communication and Signaling | 影响因子: | 8.900 |
| 时间: | 2025 | 起止号: | 2025 May 7; 23(1):216 |
| doi: | 10.1186/s12964-025-02196-x | 研究方向: | 细胞生物学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
